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Abstract

All lasers have a coherence time and length as a result of the dimensions of the optical cavity

in which the beam is formed. These values can be determined using a monochrometer to find the

wavelengths present in the laser light emitted and the wavelength and frequency between modes.

Using a Czerny-Turner monochrometer, the wavelength of a red diode laser was found to be 660 ±

6 nm with a coherence length of 1.08×10−4 ± 10.59 ×10−4 m and a coherence time of 3.6×10−13

± 35.3×10−13 s.
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I. INTRODUCTION

Lasers produce light by a process called stimulated emission. The word “laser” is an

acronym for “Light Amplification by Stimulated Emission of Radiation.”4 Lasers are capable

of converting incoherent light into a coherent beam. In a normal chamber-produced laser,

such as a HeNe laser, the gas in the optical cavity is heated to cause the atoms of the gas to

start absorbing and releasing photons of specific wavelengths. Thus the possible wavelengths

of a laser are determined by the temperature of the gas and the atoms that constitute the gas

in the optical cavity. However, in the contained space of the optical cavity a phenomenon

known as population inversion results, in which there are more electrons in the excited state

than in the ground state, disrupting the equilibrium of the gas atoms. As a result, when

one electron releases a photon and moves back down to the ground state, it is likely to cause

produce the same result in another atom. This effect is the stimulated emission referred to

in the “laser” acronym.5

With this process occurring, the optical cavity length and mirrors at either end are tuned

to allow the chamber to function as a Fabry-Perot resonator. The mirrors by the use of

specific materials to reflect only at a specific wavelength and the optical cavity length is a

large integer multiple of that wavelength.4 However, as might be guessed, there are other

wavelengths that can resonate constructively at integer multiples within the given cavity

length, and the mirrors will not completely cut out all reflection of these wavelengths.

This is where the use of an monochrometer comes in. The monochrometer, in the case

of this experiment a crossed Czerny-Turner monochrometer, separates the laser into its

constituent modes corresponding to each wavelength present and allows for the measurement

of the wavelength separation within each mode by observation of the fringe pattern. These

observations then allow for the calculation of the coherence time and coherence length of

the laser beam, which describe the amount of time and length, respectively, over which the

light constituting the laser beam remains coherent. In this experiment, a diode laser is used.

While diode lasers do not use a gas to produce the effect of stimulated emission, the same

tuning characteristics are at play and will give the diode laser a coherence length and time

analogous to those produced by a HeNe laser.
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II. THEORY

All lasers display a characteristic coherence time (τCoh) and length (lCoh). These charac-

teristics are the result of the process of stimulated emission and optical cavity variables as dis-

cussed above. To determine τCoh and lCoh, a monochrometer can be used. Monochrometers

separate out light of a single wavelength into spectral lines and will separate light of multiple

wavelengths into longitudinal modes composed of only one wavelength. Monochrometers ac-

complish this by using both spherical mirrors and a reflection grating along with an entrance

slit and imaging surface as seen in Fig. (2). The first spherical mirror is aligned such that

the laser light coming through the entrance slit is at the mirror’s focal point given by Eq. (1)

where
1

f
=

1

si
+

1

so
(1)

in which f is the mirror’s focal length, si is the image distance, and so is the object distance.

The result is that the rays of light emerging from the first mirror are parallel and thus will

be parallel when incident on the reflection grating, allowing it to separate each ray into its

component modes and, due to the size of the slits in the grating, allowing for the wave nature

of light to take effect and for the patterns of constructive and destructive interference that

form the spectrum for each wavelength. Using basic trigonometric rules, the incident angle

(θi) and reflected angle (θm) at the reflection grating can be calculated for each mode. θm

and θi are then related to the wavelength, λ, of a given mode, m, by Eq. (2).

mλ = a(sin θm − sin θi) (2)

where a is the spacing between lines in the diffraction grating. For a specific mode, the

calculated wavelength can then be used along with the wavelength spacing, ∆λ, and the

index of refection of the semiconductor, nsemi, in the diode laser to determine the optical

cavity length and the frequency spread, as seen in Eq. (3) and (4) where

∆λ =
nsemiλ

2

2L
(3)

and

|∆ν| = c

nsemiλ2
|∆λ| (4)

where c is the literature value of the speed of light from NIST.2 ∆ν is then the inverse of

τCoh and the coherence length can be determined by Eq. (5) where

lCoh = cτCoh (5)
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Along with the coherence time and coherence length, the length of the optical cavity, L, in

the diode laser can also be calculated using Eq. (6) where

L =
nsemiλ

2

2∆λ
(6)

where nsemi is the index of refraction of the semiconductor used in the diode laser.

III. METHODS AND MATERIALS

For this experiment, the first step was to measure the focal lengths of the spherical mirrors

used in the monochrometer. Because setting an object just beyond the factory specification

for the focal length of 101.6 cm would produce an image distance too large to practically

measure and compare to the predicted image distance in the laboratory, a more practical

method was used of placing an image source and mirror at opposite ends of a two meter

long measuring stick and a plane surface was adjusted until the image of the source was in

focus on the surface. The distance from the mirror to the focused image plane was 204.80

± 0.05 cm. Using Equation (1) and the source and image distances, the calculated focal

length of the mirror was 101.19 ± 0.04 cm.

Once the focal lengths of the mirrors were determined, the monochrometer was set up

according to Figure (2). The diode laser was mounted in a stand directly behind the Entrance

Slit. The distance between the Entrance Slit and Mirror 1, as well as the distance between

Mirror 2 and the Array Detector, were set equal to the focal length of the mirrors at 101.19

± 0.04 cm. The grating was then set in a position to place the zeroth order of diffraction on

the imaging plane when the grating was at zero degrees and still remain out of the way of

the laser’s path. This position was at 93.90 ± 0.05 cm away from Mirror 2 and 94.20 ± 0.05

cm away from Mirror 1, with Mirror 1 and Mirror 2 being 60.80 ± 0.05 cm from each other.

Throughout this process the height of the mirrors, grating, and entrance slit were adjusted

to keep the path of the laser beam parallel to the optical table throughout the entire path of

the optical system. With this setup in place, the diffraction grating was rotated to display

the m = 1 or m = –1 longitudinal modes of the diode laser. Because the false signal for these

modes falls on the line normal to the diffraction grating, it was possible to place another

imaging plane at the false signal and measure the distance between the diffraction grating

and the false signal to act as the base of the right triangle in the calculation of θm and θi,
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with the distance between the grating and the respective mirror forming the hypotenuse of

the triangle, as seen in Fig. (??). From these values, the wavelength of the mode can be

determined using Eq. (2).

 

Figure 1. This figure shows the schematic of the method used to measure the distance of the

normal used in the inverse cosine calculation of θm.

After the value of λ was determined, the grating was rotated to display the m = 2 mode at

the image plane in order to take advantage of the larger and clearer spacing between fringes

to aid in measurement and calculation of the wavelength spread of the laser. In order to

calculate ∆λ, the spacing between fringes, ∆λ was measured by performing multiple trials of

tracing a specific length of the interference pattern and then counting the number of fringes

recorded within that length. The total length divided by the number of lines gives the value

of ∆λ. From this value, along with the wavelength of the laser and the distances measured

in the setup, τCoh and lcoh can eventually be arrived at, as described below.
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Figure 2. This figure shows the schematic of the crossed Czerny-Turner monochrometer used in

the experimental design for the measurement of λ and ∆λ. The distance between the Entrance slit

and Mirror 1, as well as the distance between Mirror 2 and the Array Detector (the image plane)

is equivalent to the focal length of the spherical mirror. Image courtesy of B+W Tech.

IV. DATA PRESENTATION AND ANALYSIS

To determine the value of λ for the laser, the grating was first rotated to display the m = 1

mode. Forming the right triangle described above, the distance from the grating to the false

signal at the normal was 93.70 ± 0.05 cm. Using the inverse the distance from the grating

to Mirror 1 as the hypotenuse for finding θi, the inverse cosine resulted in a calculated value

of 5.906 ± 0.007 degrees for θi. In order to arrive at θm, the angle at the grating forming

the peak of the triangle between Mirrors 1 and 2 and the grating must be added to θi. This

angle is calculated by doubling the angle formed by splitting this triangle into two right

triangle, one with Mirror 1 at the corner of the opposite side and hypotenuse and the other

with Mirror two at the corner of the opposite side and the hypotenuse. Using the distance

to the halfway point between Mirror 1 and Mirror 2, the distance from the grating to this
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point, and the inverse tangent, the angle at the peak of the triangle is calculated to be θtot

= 37.655 ± 0.003 degrees. θm then is equal to θi + θtot, such that θm = 43.561 ± 0.008

degrees. Because θi is on the same side of the normal as θm, θi is assigned a negative value

in Eq. (2). This results in a calculated value of λ = 660 ± 6 nm. This process is repeated

again for the m = –1 mode, resulting in values of θi = 42.236 ± 0.009 degrees, θm = 4.581 ±

0.009 degrees, and λ = 627 ± 0.007 nm. The values of the distances, angles, and resultant

λ values can be seen below in Table (I).

Table I. This table shows the distances used to calculate the angles of incidence and reflection for

each mode along with their resultant wavelengths or, in the case of mode m = 2, the resultant

wavelength spread.

m Lnormal (cm) Lmirror (cm) θi (deg) θm (deg) λ (nm)

+1 93.70 ± 0.05 94.20 ± 0.05 5.906 ± 0.007 43.561 ± 0.008 660 ± 6

−1 93.60 ± 0.05 93.90 ± 0.05 42.236 ± 0.009 4.581 ± 0.009 627 ± 7

m L1 (cm) L2 (cm) θm1 (deg) θm2 (deg) ∆λ (nm)

2 79.70 ± 0.05 101.20 ± 0.05 69.868 ± 0.003 69.974 ± 0.003 0.186 ± 1.053

Moving to the m = 2 mode, the average of multiple trials of the measurement of ∆x,

which can be found in Table (II), results in a value of 0.131 ± 0.005 cm for the spacing

between fringes. In order to find the spacing as an angle ∆xavg can be approximated as the

numerator of tan ∆θ where the denominator of the function is the distance between Mirror 2

and the imaging plane. These distances and angles can also be seen in Table (I). tan ∆θ can

then be approximated to ∆θ, resulting in a calculated value of ∆θ = 0.74 ± 0.003 degrees.

Using this value, Eq. (2) can be modified to

∆λ =
a(sin θm1 − sin θm2)

m
(7)

where θm2 is the equal to θm1 plus ∆θ. This produces a value of ∆λ = 0.186 ± 1.053 nm.

From this value and using the total number of lines observed in the interference pattern

of the mode m = 2, the overall wavelength spread, ∆λtot was initially calculated to be

1.21×10−8 ± 6.85×10−8 m, or equivalently 12.1 ± 68.5 nm. Using Equations (4) and (5),

this resulted in ∆ν = 2.8×1012 ± 2.7×1013 Hz, τCoh = 3.6×10−13 ± 35.3×10−13 s, and lcoh =

1.08×10−4 ± 10.59×10−4 m. Using λ and ∆λ, the length of the optical cavity in the diode
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laser can also be calculated to be 3.50 ± 0.03 mm.

A significant factor to note is that in the final calculation of ∆λ, ∆ν, lCoh, and τCoh

the final uncertainty is larger than the experimental value. This seems to be the result

of propagating the uncertainty in ∆λ using the derivative method. However, when the

fractional uncertainty is used to propagate the uncertainty in ∆λ, the resulting value that

retains rather than distorts the fractional uncertainty in the error calculations. Calculating

the uncertainty in ∆λ by this method also changes the uncertainties in ∆λ lCoh and τCoh.

The resulting values are then ∆λ = 12.1 ± 0.4 nm, ∆ν = 12.8 × 1012 ± 3.1 × 109 Hz, lCoh

= 1.08 × 10−4 ± 1.2 × 10−7 m, and τCoh = 3.6 × 10−13 ± 4.0 × 10−16 s.

Table II. This table shows the values of the trials taken to obtain ∆x. From these values, the

average and standard error were taken to obtain ∆xavg = 0.131 ± 0.005 cm, which is then used to

find ∆λ = 0.186 ±1.053 nm.

Trial N Lines Total Length (cm) ∆x (cm)

1 30 ± 2 3.65 ± 0.05 0.126

2 32 ± 2 4.20 ± 0.05 0.135

V. CONCLUSION

The purpose of this experiment was to measure the wavelength spacing of a diode laser

and from this measurement calculate the coherence length and coherence time of the diode

laser. The experimental values for these parameters were ∆λ = 1.86 × 10−10 ± 1.13 ×

10−14 m with a total wavelength spread of ∆λtot = 12.1 ± 0.4 nm resulting in a coherence

length of τCoh = 3.6×10−13 ± 4×10−16 s and a coherence length of lCoh = 1.08×10−4 ±

1.2×10−7 m. While the magnitude of ∆λ matched the expected magnitude, the resultant

τCoh and lCoh deviate from the expected values by multiple orders of magnitude compared

to expected values on the nm scale for lCoh. These values are all based on an experimentally

determined value of λ = 660 ± 6 nm.

This large deviation beyond the experimental uncertainty points to a large imprecision

in the measurement methods used at some point in the process. Because the magnitude of

∆λ matches the expected magnitude, this error most likely entered the process due to an
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underestimation of the total number of lines in the interference pattern since the single slit

aperture and reflection from the spherical mirrors along with a large amount of extraneous

light significantly dimmed the interference pattern and made it difficult to view the full

spectrum and to count the lines near the end of the spectrum.

These results are important because they demonstrate that diode lasers, just like HeNe

lasers, have their own associated coherence length and time proportional to the length of

the laser’s optical cavity. As expected, just as the cavity length of the diode laser is much

smaller than that of a HeNe laser of comparable wavelength, the resultant coherence time

and length are both much shorter.
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